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Let (X, ∥ · ∥) be a Banach space and f : X → R∪{∞} be a proper function.
Then the Fenchel conjugate of f is the function f ∗ : X∗ → R ∪ {∞}
defined by,

f ∗(x∗) = sup{x∗(x)− f(x) : x ∈ X}.
In this talk we will present a proof of the following theorem:

Theorem: Let f : X → R ∪ {∞} be a proper function on a Banach space
(X, ∥ · ∥). If there exists a nonempty open subset A of Dom(f ∗) such that
argmax(x∗− f) ̸= ∅ for each x∗ ∈ A, then there exists a dense and Gδ subset
R′ of A such that (x∗ − f) : X → R ∪ {∞} has a strong maximum for each
x∗ ∈ R′. In addition, if 0 ∈ A and ε > 0 then there exists an x∗ ∈ X∗ with
∥x∗∥ < ε such that (x∗ − f) : X → R ∪ {∞} has a strong maximum.

Some applications of this theorem will also be presented, [1, 2, 3, 4, 5, 6].

References

[1] R. Baire, Sur les fonctions de variables réelles, Annali di Mat. (3) 3
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